Les distances interatomiques ont alors pour valeurs: Sn-S (sommet de la pyramide opposé à la paire non liée): 2,57 à 2,63, Sn-S (sommet de la base rectangulaire): 2,73 à 2,75, Sn-I: 3,10 à 3,50 Å. Dans tous ces cas la coordinence de l'étain est de cinq, la sixième coordinence de l'octaèdre correspondant à la paire non liée.

Finalement deux sortes d'atomes d'étain ne participent pas à ce modèle. Or les prismes auxquels appartiennent les atomes Sn(3) sont associés directement les uns aux autres et forment aux sommets et au centre de la maille des canaux à section hexagonale à l'intérieur desquels se trouvent deux atomes de soufre et deux atomes d'étain par maille. Ces canaux rappellent ceux de la variété α , à la différence essentielle que leur contenu est ordonné.

Ainsi, dans les deux structures, les atomes d'étain contenus dans les canaux hexagonaux ont des environnements différents de ceux des autres atomes d'étain constitués d'octaèdres déformés (phase β) ou de prismes triangulaires (phases α et β) d'atomes non métalliques. Ces deux structures ont donc de grandes similitudes.

Nous remercions M le Professeur N. Rodier (Centre Universitaire Pharmaceutique de Châtenay Malabry) dans le laboratoire duquel ont été effectuées les mesures des intensités.

Références

- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS. Oak Ridge National Laboratory Report ORNL-TM-305.
- CROMER, D. T. & WABER, J. T. (1965). Acta Cryst. 18, 104–109.
- GERMAIN, G. & WOOLFSON, M. M. (1968). Acta Cryst. B24, 91–96.
- NGUYEN-HUY-DUNG & THÉVET, F. (1976). Acta Cryst. B32, 1108-1111.

Acta Cryst. (1976). B32, 1115

Structure Cristalline du Composé Nd₄Ca₂Ti₆O₂₀, Terme n=6 de la Série (Nd, Ca)_nTi_nO_{3n+2}

PAR MONIQUE NANOT, FRANCINE QUEYROUX ET JEAN-CLAUDE GILLES Laboratoire de Chimie du Solide Minéral, ESPCI, 10 rue Vauquelin, 75231 Paris Cedex 05, France

ET RAYMOND CHEVALIER

Laboratoire de Minéralogie-Cristallographie associé au CNRS, Université Paris VI, 4 place Jussieu, 75230 Paris Cedex 05, France

(Reçu le 13 juin 1975, accepté le 17 septembre 1975)

Monocrystals of $Nd_4Ca_2Ti_6O_{20}$, suitable for X-ray study, have been synthesized: orthorhombic, space group $Pbn2_1$, $a = 7.664 \pm 0.007$, $b = 36.64 \pm 0.04$, $c = 5.436 \pm 0.005$ Å, Z = 4. The intensities were collected with an automatic four-circle diffractometer. Full-matrix least-squares refinement gave an unweighted R value of 0.100 for 1606 independent reflexions. The structure consists of sheets of perovskite type, each layer being displaced from the preceding one by the translation $\frac{1}{4}$ [120] with very slight displacements. The deformation of the six independent octahedra is very similar. The distances Ti–O are in the range 1.71 to 2.22 Å. The coordination number for 'atoms' (Nd, Ca) situated inside the sheets is 12:8+4and 9+3. The coordination number of 'atoms' edging the sheets is 8 and 7. The cohesion between these sheets is only due to four bonds (Nd, Ca)–O which explains the easy cleavage along (010).

Introduction

Dans des publications précédentes, nous avons décrit les phases nouvelles de formule générale $A_n B_n O_{3n+2}$ qui apparaissent dans les systèmes $Ln_2 Ti_2 O_7$ -CaTiO₃ (Ln = La, Nd) et Ca₂Nb₂O₇-CaTiO₃ (A = Ln, Ca; B = Nb, Ti) (Nanot, Queyroux & Gilles, 1973; Nanot,

A C 32B – 9

Queyroux, Gilles, Carpy & Galy, 1974; Nanot, Queyroux, Gilles, Portier & Fayard, 1975).

Une étude cristallographique préliminaire nous a permis de montrer que la structure de ces phases s'apparente à celle des variétés monoclinique et orthorhombique de Ca₂Nb₂O₇ (Rowland, Bright & Longejan, 1958; Brixner & Babcock, 1968; Brandon & Megaw,

1970; Carpy, Amestoy & Galy, 1972; Scheunemann & Müller-Buschbaum, 1974).

La présente étude est consacrée à la détermination de la structure cristalline du composé $Nd_4Ca_2Ti_6O_{20}$, terme n=6 de la série $(Nd, Ca)_nTi_nO_{3n+2}$.

Données expérimentales

Les produits de départ utilisés sont de l'oxyde de néodyme de pureté 99,9%, de l'oxyde de titane et du carbonate de calcium pour analyses.

Les échantillons ont été préparés par réaction à l'état solide entre les oxydes de néodyme, de titane et le carbonate de calcium. Un mélange homogène des trois constituants en proportions convenables a été réalisé par broyage dans un mortier. La poudre obtenue a été ensuite comprimée sous forme de cube, frittée à 1000 °C puis fondue à l'aide d'un four à image ($T_f \simeq$ 1800 °C). Des monocristaux ont été obtenus après brovage grossier des échantillons fondus. Leur étude cristallographique préliminaire a été réalisée sur une chambre de Weissenberg Enraf-Nonius avec le rayonnement Ka du cuivre. Elle montre que le composé Nd₄Ca,Ti₆O₂₀ est de symétrie orthorhombique. Les paramètres cristallins affinés à partir du diagramme de poudre sont les suivants: $a = 7,664 \pm 0,007$; b = 36,64 $\pm 0,04$; $c = 5,436 \pm 0,005$ Å; V = 1526 Å³; Z = 4.

Les groupes d'espace compatibles avec les extinctions observées sont $Pbn2_1$ et Pbnm, c'est-à-dire ceux cités par Scheunemann & Müller-Buschbaum (1974) pour $Ca_2Nb_2O_7$ (n=4) et prévisibles, dans notre hypothèse, pour tout composé $A_nB_nO_{3n+2}$ correspondant à une valeur paire de n.

Le monocristal utilisé pour la mesure des intensités de diffraction se présente sous la forme d'une plaquette d'orientation (010) et a pour dimensions $0,20 \times 0,10 \times$ 0,01 mm, ce qui entraîne une imprécision dans les résultats.

L'enregistrement des intensités des taches de diffraction a été effectué sur un diffractomètre à quatre cercles Philips PW 1100. Les réflexions indépendantes correspondant à un angle de Bragg inférieur à 35° avec la radiation $K\alpha$ du molybdène ont été mesurées par la méthode d'intégration en ω , avec une vitesse de balayage de 0,015° s⁻¹ et une amplitude d'intégration de la forme A + B tg θ (A = 0.8; B = 0.2).

Chaque réflexion a été enregistrée deux fois (hkl et $\bar{h}kl$). Pour chacune, la valeur maximale de l'intensité a été utilisée de façon à limiter les effets d'absorption dûs à la forme en plaquette du cristal. De ce fait, aucune correction d'absorption n'a été effectuée. Afin de vérifier l'orientation et la stabilité du cristal, trois réflexions axiales de référence ont été mesurées toutes les heures.

Tableau 1. Taux d'occupation, coordonnées atomiques $(\times 10^4)$ et facteurs d'agitation thermique isotropes (les écarts types sont indiqués entre parenthèses)

	Taux			_	מ
	d'occupation	x	У	Z	Б
Ti(1)	1(-)	1150 (12)	626 (2)	7500 (-)	0,3 (0,1)
Ti(2)	1(-)	1265 (12)	1334 (2)	2226 (31)	0,3(0,1)
Ti(3)	1(-)	1089 (9)	2125 (2)	7181 (29)	0,1(0,1)
Ti(4)	1(-)	1185 (15)	2875 (2)	2182 (28)	0,3 (0,1)
Ti(5)	1(-)	1192 (21)	3671 (2)	7214 (28)	0,3 (0,1)
Ti(6)	1(-)	1240 (19)	4384 (2)	2575 (33)	0,3 (0,1)
(Nd, Ca) (1)	1,11 (5)	3775 (7)	393 (1)	2497 (22)	0,4 (0,05)
(Nd, Ca) (2)	1,10 (5)	3746 (8)	1326 (1)	7096 (22)	0,5 (0,05)
(Nd, Ca) (3)	0,83 (5)	3739 (11)	2071 (1)	2186 (22)	0,6 (0,05)
(Nd, Ca) (4)	0,79 (5)	3726 (11)	2843 (1)	7078 (23)	0,8 (0,05)
(Nd, Ca) (5)	1,08 (5)	3743 (10)	3597 (1)	2147 (22)	0,7 (0,05)
(Nd, Ca) (6)	1,09 (5)	3758 (7)	4738 (1)	8083 (22)	0,3 (0,05)
O (1)	1(-)	3808 (120)	693 (12)	8058 (106)	1,3 (0,7)
O(2)	1(-)	1336 (166)	245 (14)	5321 (103)	0,8 (0,8)
O(3)	1(-)	1074 (70)	335 (11)	212 (88)	0,5 (0,7)
O(4)	1(-)	1758 (72)	965 (13)	4273 (91)	0,1 (0,6)
O(5)	1(-)	1026 (85)	1093 (11)	9099 (82)	0,2 (0,7)
O(6)	1(-)	3593 (127)	1458 (13)	1565 (93)	0,3 (0,7)
O(7)	1(-)	919 (92)	1818 (16)	- 66 (122)	0,9 (1,0)
O(8)	1(-)	1692 (108)	1707 (18)	5071 (133)	0,6 (1,2)
O(9)	1(-)	3614 (103)	2185 (11)	7825 (77)	0,6 (0,6)
O(10)	1(-)	937 (134)	2553 (18)	9072 (134)	0,6 (1,2)
O(11)	1(-)	1621 (62)	2451 (13)	4243 (86)	0,8 (0,7)
O(12)	1(-)	3712 (121)	2918 (12)	1444 (88)	1,0 (0,7)
O(13)	1(-)	1584 (75)	3175 (14)	5009 (104)	0,4 (0,8)
O(14)	1(-)	962 (68)	3298 (13)	-6 (94)	0,5 (0,7)
O(15)	1(-)	3696 (108)	3603 (12)	7726 (88)	1,0 (0,6)
O(16)	1(-)	1369 (123)	3904 (13)	4026 (95)	0,3 (0,8)
O(17)	1 (-)	691 (100)	4051 (19)	9266 (143)	1,7 (1,2)
O(18)	1(-)	3694 (119)	4307 (12)	1623 (88)	0,8 (0,7)
O(19)	1(-)	1543 (97)	4581 (17)	5388 (122)	0,6 (1,0)
O(20)	1(-)	1058 (110)	4797 (12)	529 (95)	0,4 (0,8)

Tableau 2. Distances interatomiques (Å) et angles (°) dans les polyèdres de coordination des atomes de titane(les écarts types sont indiqués entre parenthèses)

Polyèdre de Ti(1)-O(3) Ti(1)-O(2) Ti(1)-O(5) Ti(1)-O(18) Ti(1)-O(1) Ti(1)-O(4) \langle Ti(1)-O \rangle	coordination (1,83 (4) 1,84 (5) 1,93 (4) 1,96 (9) 2,08 (9) 2,21 (5) 1,97 (6)	te l'atome Ti(1) O(3)-O(2) O(3)-O(5) O(3)-O(18) O(2)-O(18) O(2)-O(18) O(2)-O(1) O(2)-O(4) O(5)-O(18) O(5)-O(1) O(5)-O(4) O(18)-O(4) O(1)-O(4)	2,69 (8) 2,85 (6) 2,98 (8) 2,74 (9) 2,71 (13) 2,92 (12) 2,73 (7) 2,68 (9) 2,66 (9) 2,73 (6) 2,86 (9) 2,78 (8)	$\begin{array}{c} O(3) & -Ti(1) - O(2) \\ O(3) & -Ti(1) - O(5) \\ O(3) & -Ti(1) - O(18) \\ O(3) & -Ti(1) - O(11) \\ O(2) & -Ti(1) - O(18) \\ O(2) & -Ti(1) - O(18) \\ O(2) & -Ti(1) - O(18) \\ O(5) & -Ti(1) - O(18) \\ O(5) & -Ti(1) - O(11) \\ O(5) & -Ti(1) - O(11) \\ O(5) & -Ti(1) - O(11) \\ O(5) & -Ti(1) - O(4) \\ O(18) - Ti(1) - O(4) \\ O(1) & -Ti(1) - O(1) \\ O(1) &$	95 (2) 99 (3) 104 (3) 89 (2) 91 (2) 96 (4) 84 (2) 87 (2) 83 (2) 82 (2) 87 (2) 81 (2)
		$\langle 0 0 \rangle$	2,78 (8)	⟨OTi(1)-O⟩	90 (2)
Polyèdre de d	coordination d	le l'atome Ti(2)			
Ti(2)-O(4) Ti(2)-O(6) Ti(2)-O(5) Ti(2)-O(15) Ti(2)-O(8) Ti(2)-O(7) ⟨Ti(2)-O⟩	1,80 (5) 1,88 (9) 1,93 (4) 2,01 (8) 2,09 (7) 2,19 (6) 1,98 (6)	$\begin{array}{c} O(4) - O(6) \\ O(4) - O(5) \\ O(4) - O(15) \\ O(6) - O(8) \\ O(6) - O(8) \\ O(6) - O(7) \\ O(5) - O(7) \\ O(5) - O(7) \\ O(5) - O(7) \\ O(15) - O(8) \\ O(15) - O(7) \\ O(8) - O(8) \\ O(8) \\$	2,73 (8) 2,91 (6) 2,96 (9) 2,76 (9) 2,74 (9) 2,57 (10) 2,60 (10) 2,89 (8) 2,70 (8) 2,87 (10) 2,76 (9) 2,89 (9)	$\begin{array}{c} O(4) - Ti(2) - O(6) \\ O(4) - Ti(2) - O(5) \\ O(4) - Ti(2) - O(15) \\ O(4) - Ti(2) - O(8) \\ O(6) - Ti(2) - O(5) \\ O(6) - Ti(2) - O(8) \\ O(6) - Ti(2) - O(7) \\ O(5) - Ti(2) - O(7) \\ O(5) - Ti(2) - O(7) \\ O(15) - Ti(2) - O(7) \\ O(15) - Ti(2) - O(7) \\ O(15) - Ti(2) - O(7) \\ O(8) - Ti(2) - Ti(2) \\ O(8) - $	96 (2) 103 (3) 102 (3) 90 (3) 92 (3) 81 (3) 79 (2) 95 (3) 82 (2) 89 (2) 82 (2) 85 (3)
		<00>	2,78 (9)	⟨OTi(2)-O⟩	90 (3)
Polyèdre de d	coordination d	le l'atome Ti(3)			
Ti(3)-O(12) Ti(3)-O(7) Ti(3)-O(10) Ti(3)-O(8) Ti(3)-O(9) Ti(3)-O(9) Ti(3)-O(11) (Ti(3)-O)	1,88 (9) 1,88 (6) 1,88 (7) 1,97 (7) 1,98 (8) 2,04 (4) 1,94 (7)	$\begin{array}{c} O(12)-O(7)\\ O(12)-O(10)\\ O(12)-O(8)\\ O(12)-O(11)\\ O(7)-O(10)\\ O(7)-O(9)\\ O(10)-O(9)\\ O(10)-O(9)\\ O(10)-O(11)\\ O(8)-O(9)\\ O(8)-O(11)\\ O(9)-O(11)\\ O(9)-O(11)\\ \end{array}$	2,73 (10) 2,82 (10) 2,77 (10) 2,87 (9) 2,74 (9) 2,72 (9) 2,72 (9) 2,75 (11) 2,71 (9) 2,74 (9) 2,77 (9) 2,77 (9) 2,67 (7)	$\begin{array}{c} O(12)-Ti(3)-O(7)\\ O(12)-Ti(3)-O(10)\\ O(12)-Ti(3)-O(8)\\ O(12)-Ti(3)-O(11)\\ O(7)-Ti(3)-O(10)\\ O(7)-Ti(3)-O(8)\\ O(7)-Ti(3)-O(9)\\ O(10)-Ti(3)-O(9)\\ O(10)-Ti(3)-O(11)\\ O(8)-Ti(3)-O(9)\\ O(8)-Ti(3)-O(11)\\ O(9)-Ti(3)-O(11)\\ O(11)\\ O(11)-Ti(3)-O(11)\\ O(11)\\ O(11)-Ti(3)-O(11)\\ O(11)-Ti(3)-Ti(3)-O(11)\\ O(11)-Ti(3)-Ti(3)-Ti(3)-Ti(3)-Ti(3)\\ O(11)-Ti(3)-$	93 (2) 97 (3) 92 (2) 94 (3) 93 (2) 91 (2) 90 (2) 83 (3) 87 (3) 88 (3) 87 (3) 83 (2)
		(00)	2,74 (9)	(OTi(3)-O)	90 (2,5)
Polyèdre de d	coordination d	le l'atome Ti(4)			
Ti(4)-O(13) Ti(4)-O(11) Ti(4)-O(14) Ti(4)-O(12) Ti(4)-O(9) Ti(4)-O(10) (Ti(4)-O)	1,92 (5) 1,95 (4) 1,96 (5) 1,99 (9) 2,02 (8) 2,08 (7) 1,99 (6)	$\begin{array}{c} O(13)-O(11)\\ O(13)-O(14)\\ O(13)-O(12)\\ O(13)-O(9)\\ O(11)-O(12)\\ O(11)-O(10)\\ O(14)-O(10)\\ O(14)-O(10)\\ O(14)-O(10)\\ O(12)-O(10)\\ O(9)-O(10)\\ O(9)-O(10) \end{array}$	2,69 (7) 2,81 (7) 2,71 (9) 2,89 (9) 2,80 (8) 2,88 (8) 2,89 (9) 2,65 (9) 2,96 (7) 2,78 (9) 2,83 (11) 2,88 (10)	$\begin{array}{c} O(13)-Ti(4)-O(11)\\ O(13)-Ti(4)-O(14)\\ O(13)-Ti(4)-O(12)\\ O(13)-Ti(4)-O(9)\\ O(11)-Ti(4)-O(9)\\ O(11)-Ti(4)-O(9)\\ O(11)-Ti(4)-O(10)\\ O(14)-Ti(4)-O(12)\\ O(14)-Ti(4)-O(10)\\ O(14)-Ti(4)-O(10)\\ O(12)-Ti(4)-O(10)\\ O(9)-Ti(4)-O(10)\\ O(9)-Ti(4)-O(10)\\ O(9)-Ti(4)-O(10)\\ O(9)-Ti(4)-O(10)\\ O(10)\\ O(10)-Ti(4)-O(10)\\ O(10)\\ O(10)-Ti(4)-O(10)\\ O(10)-Ti(4)-Ti(4)-O(10)\\ O(10)-Ti(4$	88 (2) 93 (2) 88 (2) 95 (2) 91 (2) 89 (2) 92 (2) 84 (2) 96 (3) 87 (2) 88 (2) 89 (2)
		<00>	2,81 (9)	(OTi(4)O)	90 (2)
Polyèdre de d	coordination d	le l'atome Ti(5)	, ,		
$\begin{array}{c} Ti(5)-O(17)\\ Ti(5)-O(16)\\ Ti(5)-O(15)\\ Ti(5)-O(14)\\ Ti(5)-O(6)\\ Ti(5)-O(13) \end{array}$	1,83 (7) 1,94 (5) 1,96 (8) 2,05 (5) 2,08 (9) 2,20 (5)	O(17)-O(16) O(17)-O(15) O(17)-O(14) O(17)-O(6) O(16)-O(15) O(16)-O(6)	2,95 (9) 2,96 (10) 2,80 (9) 2,87 (10) 2,91 (10) 2,87 (10)	O(17)-Ti(5)-O(16) O(17)-Ti(5)-O(15) O(17)-Ti(5)-O(14) O(17)-Ti(5)-O(6) O(16)-Ti(5)-O(15) O(16)-Ti(5)-O(6)	103 (3) 103 (3) 92 (2) 94 (3) 97 (3) 91 (2)
		O(16)-O(13)	2,74 (8)	O(16)-Ti(5)-O(13)	82 (2)

Tableau 2 (suite)						
⟨Ti(5)−O⟩	2,01 (6)	O(15)-O(14) O(15)-O(13) O(14)-O(6) O(14)-O(13) O(6)-O(13)	2,68 (8) 2,70 (8) 2,76 (9) 2,79 (7) 2,80 (10)	O(15)-Ti(5)-O(14) O(15)-Ti(5)-O(13) O(14)-Ti(5)-O(6) O(14)-Ti(5)-O(13) O(6)-Ti(5)-O(13)	84 (2) 81 (2) 84 (2) 82 (2) 81 (2)	
		<00>	2,82 (9)	(OTi(5)-O)	89,5 (2)	
Polyèdre de coordination de l'atome Ti(6)						
Ti(6)-O(19) Ti(6)-O(20) Ti(6)-O(1) Ti(6)-O(16) Ti(6)-O(18) Ti(6)-O(17) \langle Ti(6)-O \rangle	1,71 (7) 1,89 (5) 1,91 (9) 1,94 (5) 1,98 (9) 2,22 (7) 1,94 (7)	O(19)-O(20) O(19)-O(1) O(19)-O(16) O(20)-O(18) O(20)-O(18) O(20)-O(17) O(1)O(16) O(1)O(16) O(1)O(17) O(16)-O(18) O(16)-O(17) O(18)-O(17)	2,79 (9) 2,65 (10) 2,60 (8) 2,82 (9) 2,85 (9) 2,77 (10) 2,84 (8) 2,52 (11) 2,69 (10) 2,66 (10) 2,70 (9) 2,80 (9)	$\begin{array}{c} O(19)-Ti(6)-O(20)\\ O(19)-Ti(6)-O(1)\\ O(19)-Ti(6)-O(16)\\ O(19)-Ti(6)-O(18)\\ O(20)-Ti(6)-O(18)\\ O(20)-Ti(6)-O(18)\\ O(20)-Ti(6)-O(17)\\ O(1)-Ti(6)-O(17)\\ O(1)-Ti(6)-O(17)\\ O(16)-Ti(6)-O(17)\\ O(16)-Ti(6)-O(17)\\ O(18)-Ti(6)-O(17)\\ O(18)-Ti(6)-Ti(6)-Ti(6)\\ O(18)-Ti(6)-Ti(6)\\ O(18)-Ti(6)-Ti(6)\\ O(18)-Ti(6)-Ti(6)-Ti(6)\\ O(18)-Ti(6)-Ti(6)-Ti(6)\\ O(18)-Ti(6)-Ti(6)\\ O(18)-Ti(6)-Ti(6)\\ O(18)-Ti(6)-Ti(6)-Ti(6)\\ O(18)-Ti(6)-Ti(6)\\ O(18)-Ti(6)-Ti(6)\\ O(18)-Ti(6)-Ti(6)\\ O($	102 (3) 94 (3) 91 (3) 100 (3) 97 (3) 92 (3) 87 (2) 82 (2) 81 (2) 86 (3) 81 (2) 84 (2)	
		(00)	2,73 (9)	(OTi(6)-O)	90 (3)	

Dans ces conditions, 2336 réflexions indépendantes d'intensité $I \ge 3\sigma(I)^*$ ont été enregistrées et corrigées du facteur de Lorentz-polarisation.

la coordonnée z de l'atome Ti(1) soit égale à 0,75. Dans un premier temps, les sites des cations de type A ont été affectés d'un facteur de forme:

Détermination et affinement de la structure

Comme nous l'avons montré antérieurement, la structure des différentes phases $A_n B_n O_{3n+2}$ peut être décrite à partir d'un réseau d'octaèdres BO_6 liés par les sommets, formant des feuillets crénelés de type pérovskite déformée parallèles au plan (010).

Ces feuillets, d'épaisseur *n* octaèdres, ont pour composition $(B_n O_{3n+2})_{\infty}$. Les cations A sont situés d'une part dans les cavités dodécaédriques ménagées au sein des feuillets, d'autre part entre les feuillets où ils assurent la cohésion de la structure (Nanot *et al.*, 1974).

Pour le composé $Nd_4Ca_2Ti_6O_{20}$, l'épaisseur des feuillets est de six octaèdres; pour le composé $Ca_2Nb_2O_7$ orthorhombique étudié par Scheunemann & Müller-Buschbaum (1974), elle est de quatre octaèdres. L'analogie entre les mailles de ces deux composés et l'identité de leurs groupes spatiaux nous a permis d'élaborer pour le composé $Nd_4Ca_2Ti_6O_{20}$ un modèle construit à partir des données de Scheunemann par insertion de deux octaèdres supplémentaires, celle-ci respectant l'enchaînement des octaèdres à l'intérieur des feuillets. Les atomes de néodyme et de calcium sont répartis de façon statistique sur les sites des atomes de calcium; les atomes de titane remplacent les atomes de niobium.

L'affinement a été conduit à partir de ce modèle dans le groupe $Pbn2_1$, à l'aide des 1606 réflexions les plus intenses, † en plaçant l'origine de la maille de façon que

[†] Dans cette sélection ont été négligées les réflexions pour lesquelles $|F_o| \le 5\%$ de $|F_o|_{max}|$.

🔘 (Nd, Ca)

Fig. 1. Projection selon Ox des atomes contenus dans un quart de maille (-0, 14 < x < 0, 39).

^{*} $\sigma(I) = \sqrt{I_0 + B_1 + B_2 + p^2 I_{net}^2}$, I_0 = intensité intégrée totale pendant t(s), B_1, B_2 = fonds continus à gauche et à droite du pic pendant t/2, $I_{net} = I_0 - (B_1 + B_2)$, p = 0,04 facteur d'appareillage.

$$f_{(Nd,Ca)} = \frac{2}{3} f_{Nd}^{3} + \frac{1}{3} f_{Ca}^{2} +$$

qui correspond à une répartition statistique des ions Nd^{3+} et Ca^{+2} dans ces sites. L'affinement des coordonnées atomiques et des facteurs *B* d'agitation thermique isotropes a conduit dans ce cas à des valeurs dispersées du facteur *B* pour les sites (Nd, Ca).

En attribuant une valeur arbitraire à B(B=0,5) pour tous les atomes de type A, l'affinement des taux d'occupation des sites (Nd, Ca) a été conduit de telle sorte que leur somme soit constante, à l'aide du sousprogramme *RESET* de *ORFLSQ* (Busing, Smith, Peterson & Levy, 1964). Cet affinement conduit, pour les sites (Nd, Ca), à des valeurs de taux d'occupation consignées dans le Tableau 1.

L'affinement sans pondération a été poursuivi sur les paramètres atomiques et les facteurs d'agitation thermique isotropes. Il a fait converger le facteur $R \ge 0,10$. (R=0,12 pour l'ensemble des 2336 réflexions). Les valeurs finales sont données dans le Tableau 1.*

Discussion de la structure

La structure du composé $Nd_4Ca_2Ti_6O_{20}$ correspond bien à l'hypothèse avancée (Fig. 1). Elle est constituée

* La liste des facteurs de structure a été déposée au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 31394: 11 pp., 1 microfiche). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, Angleterre. dans la direction [010] de feuillets de structure pérovskite déformée, chaque feuillet se déduisant du feuillet précédent par une translation égale à $\frac{1}{4}$ [120] à de faibles déplacements près des atomes.

Dans les six octaèdres indépendants de déformation sensiblement égale, les distances Ti–O varient de 1,71 à 2,22 Å et les distances O–O de 2,52 à 2,99 Å (Tableau 2).

Les atomes de calcium et de néodyme sont situés, d'une part, dans les cavités délimitées par les octaèdres à l'intérieur des feuillets et, d'autre part, entre les feuillets. Les atomes de calcium ont tendance à occuper préférentiellement au sein des feuillets les cavités qui sont le plus à l'intérieur; toutefois une répartition ordonnée des atomes de calcium et de néodyme est loin d'être réalisée (Tableau 1).

Les quatre atomes (Nd, Ca) (2), (3), (4) et (5) sont entourés par douze atomes d'oxygène répartis à l'intérieur d'une sphère de rayon 3,5 Å et formant un cubooctaèdre déformé (Tableau 3). Les distances (Nd, Ca)– O sont comprises entre 2,28 et 3,28 Å. Leur variation présente une nette discontinuité à 2,80 Å. Ainsi, la coordinence des atomes (Nd, Ca) (2) et (3) et (Nd, Ca) (4) et (5) est respectivement égale à 8+4 et 9+3. Celle des atomes (Nd, Ca) (1) et (6) situés en bordure des feuillets est plus faible. Au voisinage de l'atome (Nd, Ca) (1) on observe huit atomes d'oxygène à des distances comprises entre 2,42 et 2,79 Å et deux autres à 3,22 et 3,38 Å.

Autour de l'atome (Nd, Ca) (6) on trouve sept atomes d'oxygène à des distances comprises entre 2,32 et

Fig. 2. Liaisons (Nd, Ca) – O entre deux feuillets. Projection suivant Ox des atomes de cote x comprise entre 0,07 et 0,41. La numérotation des atomes est indiquée entre parenthèses. Leur cote ($\times 10^2$) est soulignée,

Tableau 3. Distances interatomiques (Å) (Nd, Ca)-O inférieures à 3,5 Å dans les polyèdres de coordination des atomes (Nd, Ca) (les écarts types sont indiqués entre parenthèses)

	2,42 (7) 2,43 (5) 2,44 (4) 2,49 (9) 2,51 (7) 2,66 (5) 2,70 (7) 2,79 (5) 3,22 (5) 3,38 (6) 2,70 (6)	(Nd, Ca) (Nd, Ca)	$\begin{array}{l} (2) - O(8) \\ (2) - O(1) \\ (2) - O(16) \\ (2) - O(16) \\ (2) - O(6) \\ (2) - O(5) \\ (2) - O(4) \\ (2) - O(17) \\ (2) - O(6) \\ (2) - O(9) \\ (2) - O(7) \\ (2) - O(13) \end{array}$	2,38 (8) 2,39 (4) 2,43 (8) 2,48 (5) 2,48 (5) 2,54 (6) 2,54 (5) 2,56 (7) 3,06 (5) 3,18 (4) 3,22 (7) 3,26 (5)
		((Nd, Ca)	(2)-O	2,71 (6)
(Nd, Ca) (3)-O(6) (Nd, Ca) (3)-O(10) (Nd, Ca) (3)-O(9) (Nd, Ca) (3)-O(9) (Nd, Ca) (3)-O(11) (Nd, Ca) (3)-O(13) (Nd, Ca) (3)-O(13) (Nd, Ca) (3)-O(14) (Nd, Ca) (3)-O(12) (Nd, Ca) (3)-O(12) (Nd, Ca) (3)-O(10) (Nd, Ca) (3)-O(10)	2,28 (5) 2,41 (9) 2,42 (4) 2,42 (5) 2,60 (8) 2,66 (7) 2,66 (5) 3,10 (4) 3,14 (4) 3,25 (5) 3,26 (9) 2,74 (6)	(Nd, Ca) (Nd, Ca) (Nd, Ca) (Nd, Ca) (Nd, Ca) (Nd, Ca) (Nd, Ca) (Nd, Ca) (Nd, Ca) (Nd, Ca)	$\begin{array}{c} (4) - O(13) \\ (4) - O(12) \\ (4) - O(7) \\ (4) - O(9) \\ (4) - O(10) \\ (4) - O(11) \\ (4) - O(11) \\ (4) - O(10) \\ (4) - O(15) \\ (4) - O(12) \\ (4) - O(14) \\ (4) - O(8) \end{array}$	2,34 (6) 2,40 (5) 2,40 (7) 2,46 (4) 2,63 (9) 2,66 (4) 2,77 (8) 2,77 (8) 2,81 (4) 3,08 (5) 3,14 (5) 3,25 (8) 2,72 (6)
$ \begin{array}{c} (\mathrm{Nd},\mathrm{Ca}) (5){=}\mathrm{O} \\ (\mathrm{Nd},\mathrm{Ca}) (5){=}\mathrm{O} (5) \\ (\mathrm{Nd},\mathrm{Ca}) (5){=}\mathrm{O} (16) \\ (\mathrm{Nd},\mathrm{Ca}) (5){=}\mathrm{O} (12) \\ (\mathrm{Nd},\mathrm{Ca}) (5){=}\mathrm{O} (12) \\ (\mathrm{Nd},\mathrm{Ca}) (5){=}\mathrm{O} (13) \\ (\mathrm{Nd},\mathrm{Ca}) (5){=}\mathrm{O} (14) \\ (\mathrm{Nd},\mathrm{Ca}) (5){=}\mathrm{O} (14) \\ (\mathrm{Nd},\mathrm{Ca}) (5){=}\mathrm{O} (14) \\ (\mathrm{Nd},\mathrm{Ca}) (5){=}\mathrm{O} (14) \\ (\mathrm{Nd},\mathrm{Ca}) (5){=}\mathrm{O} (17) \\ \end{array} $	2,74 (6) 2,35 (5) 2,38 (8) 2,41 (5) 2,53 (4) 2,67 (5) 2,73 (6) 2,75 (5) 2,77 (8) 3,04 (5) 3,23 (5) 3,28 (7)	((Nd, Ca) (Nd, Ca) (Nd, Ca) (Nd, Ca) (Nd, Ca) (Nd, Ca) (Nd, Ca) (Nd, Ca) (Nd, Ca)	$\begin{array}{c} (4) - O \\ (6) - O(19) \\ (6) - O(2) \\ (6) - O(3) \\ (6) - O(2) \\ (6) - O(2) \\ (6) - O(18) \\ (6) - O(17) \\ (6) - O(4) \\ (6) - O \\ \end{array}$	2,72 (6) 2,32 (7) 2,33 (9) 2,38 (5) 2,48 (5) 2,48 (7) 2,48 (4) 3,51 (5) 3,52 (4) 2,66 (6)
(Nd. Ca) (5)-O)	2 73 (6)			

2,50 Å et deux autres à 3,51 et 3,52 Å. La coordinence des atomes (Nd, Ca) (1) et (Nd, Ca) (6) est donc re-

spectivement égale à 8+2 et 7+2. Les atomes (Nd, Ca) (1) et (6) assurent la cohésion entre les feuillets par les seules liaisons (Nd, Ca) (1)–O(19),* (Nd, Ca) (1)–O(20), (Nd, Ca) (6)–O(2) et (Nd, Ca) (6)–O(3), ce qui rend compte du clivage facile des cristaux suivant le plan (010) (Fig. 2).

Conclusion

La structure cristalline du composé $Nd_4Ca_2Ti_6O_{20}$ est en accord avec le modèle prévu dans notre hypothèse.

Nous poursuivons actuellement l'étude des homologues de ce composé dans d'autres systèmes $Ln_2Ti_2O_7$ -CaTiO₃ dans le but de mettre en évidence un ordre éventuel entre les ions lanthanide et calcium.

Nous tenons à remercier Monsieur Bachet pour l'enregistrement et le traitement des données sur bande magnétique.

* Cette liaison peut ne pas être considérée comme effective, auquel cas le cohésion entre les feuillets ne serait assurée que par trois liaisons.

Références

- BRANDON, J. K. & MEGAW, H. D. (1970). *Phil. Mag.* 21, 189–194.
- BRIXNER, L. H. & BABCOCK, K. (1968). Mater. Res. Bull. 3, 817-824.
- BUSING, W. R., SMITH, H. G., PETERSON, S. W. & LEVY, H. A. (1964). J. Phys. Paris, 25, (5), 495–496.
- CARPY, A., AMESTOY, P. & GALY, J. (1972). C. R. Acad. Sci. Paris, Sér. C, 275, 833–835.
- NANOT, M., QUEYROUX, F. & GILLES, J. C. (1973). C. R. Acad. Sci. Paris, Sér. C, 277, 505-506.
- NANOT, M., QUEYROUX, F., GILLES, J. C., CARPY, A. & GALY, J. (1974). J. Solid State Chem. 11, 272–284.
- NANOT, M., QUEYROUX, F., GILLES, J. C., PORTIER, R. & FAYARD, M. (1975). *Mater. Res. Bull.* 10, 313–318.
- Rowland, J. F., Bright, N. F. & Longejan, A. (1958). Advanc. X-ray Anal. 2, 97-106.
- SCHEUNEMANN, K. & MÜLLER-BUSCHBAUM, H. K. (1974). J. Inorg. Nucl. Chem. 36, 1965–1970.